Tetrahydrobiopterin increases NO-dependent vasodilation in hypercholesterolemic human skin through eNOS-coupling mechanisms.

نویسندگان

  • Lacy M Alexander
  • Jessica L Kutz
  • W Larry Kenney
چکیده

Localized exogenous R-tetrahydrobiopterin (R-BH(4)) corrects the deficit in local heat-induced vasodilation (VD) in hypercholesterolemic (HC) human skin through one of two plausible mechanisms: by serving as an essential cofactor to stabilizing endothelial nitric oxide (NO) synthase (eNOS) or through generalized antioxidant effects. We used the stereoisomer S-BH(4), which has the same antioxidant properties but does not function as an essential NOS cofactor, to elucidate the mechanism by which R-BH(4) restores cutaneous VD in HC humans. Intradermal microdialysis fibers were placed in 20 normocholesterolemic (NC), 13 midrange cholesterolemic (MC), and 18 HC (LDL: 94 ± 3, 124 ± 3 and 179 ± 6 mg/dl, respectively) men and women to perfuse Ringer (control site) and R-BH(4). In 10 NC, 13 MC, and 9 HC subjects (LDL: 94 ± 3, 124 ± 3, 180 ± 10 mg/dl), S-BH(4) was perfused at a third microdialysis site. Skin blood flow was measured during a standardized local heating protocol to elicit eNOS-dependent VD. After cutaneous vascular conductance (CVC = LDF/MAP) plateaued, NO-dependent VD was quantified by perfusing N(G)-nitro-l-arginine methyl ester (l-NAME). Data were normalized as %CVC(max). Fully expressed VD (NC: 97.9 ± 2.3 vs. MC: 85.4 ± 5.4, HC: 79.9 ± 4.2%CVC(max)) and the NO-dependent portion (NC: 62.1 ± 3 vs. MC: 45.8 ± 3.9, HC: 35.7 ± 2.8%CVC(max)) were reduced in HC (both P < 0.01 vs. NC), but only the fully expressed VD was reduced in MC (P < 0.01 vs. NC). R-BH(4) increased the fully expressed (93.9 ± 3.4%CVC(max); P < 0.01) and NO-dependent VD (52.1 ± 5.1%CVC(max); P < 0.01) in HC but not in NC or MC. S-BH(4) increased full-expressed VD in HC (P < 0.01) but did not affect NO-dependent VD in HC or MC. In contrast S-BH(4) attenuated NO-dependent VD in NC (control: 62.1 ± 3 vs. S-BH(4): 41.6 ± 7%CVC(max); P < 0.001). Exogenous R-BH(4) restores NO-dependent VD in HC human skin predominantly through NOS coupling mechanisms but increases full expression of the local heating response through generalized antioxidant properties.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oral sapropterin acutely augments reflex vasodilation in aged human skin through nitric oxide-dependent mechanisms.

Functional constitutive nitric oxide synthase (NOS) and its cofactor tetrahydrobiopterin (BH4) are required for full reflex cutaneous vasodilation and are attenuated in primary aging. Acute, locally administered BH4 increases reflex vasodilation through NO-dependent mechanisms in aged skin. We hypothesized that oral sapropterin (Kuvan, shelf-stable pharmaceutical formulation of BH4) would augme...

متن کامل

Myocardial ischemia results in tetrahydrobiopterin (BH4) oxidation with impaired endothelial function ameliorated by BH4.

Coronary vasodilation is impaired in the postischemic heart with a loss of endothelial nitric oxide synthase (eNOS) activity, but the mechanisms underlying ischemia-induced eNOS dysfunction are not understood. For nitric oxide (NO) synthesis, eNOS requires the redox-sensitive cofactor tetrahydrobiopterin (BH(4)); however, the role of BH(4) in ischemia-induced endothelial dysfunction remains unk...

متن کامل

Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension.

Tetrahydrobiopterin is a critical cofactor for the NO synthases, and in its absence these enzymes become "uncoupled," producing reactive oxygen species (ROSs) rather than NO. In aortas of mice with deoxycorticosterone acetate-salt (DOCA-salt) hypertension, ROS production from NO synthase is markedly increased, and tetrahydrobiopterin oxidation is evident. Using mice deficient in the NADPH oxida...

متن کامل

Endothelial regulation of vasomotion in apoE-deficient mice: implications for interactions between peroxynitrite and tetrahydrobiopterin.

BACKGROUND Altered endothelial cell nitric oxide (NO(*)) production in atherosclerosis may be due to a reduction of intracellular tetrahydrobiopterin, which is a critical cofactor for NO synthase (NOS). In addition, previous literature suggests that inactivation of NO(*) by increased vascular production superoxide (O(2)(*-)) also reduces NO(*) bioactivity in several disease states. We sought to...

متن کامل

Stoichiometric Relationships Between Endothelial Tetrahydrobiopterin, Endothelial NO Synthase (eNOS) Activity, and eNOS Coupling in Vivo Insights From Transgenic Mice With Endothelial-Targeted GTPCH and eNOS Overexpression

Endothelial dysfunction in vascular disease states is associated with reduced NO bioactivity and increased superoxide (O2 ) production. Some data suggest that an important mechanism underlying endothelial dysfunction is endothelial NO synthase (eNOS) uncoupling, whereby eNOS generates O2 rather than NO, possibly because of a mismatch between eNOS protein and its cofactor tetrahydrobiopterin (BH...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 304 2  شماره 

صفحات  -

تاریخ انتشار 2013